Final Exam for MTH 221 , Spring 2011

Ayman Badawi

QUESTION 1. (12pts, each $=1.5$ points) Answer the following as true or false: NO WORKING NEED BE SHOWN.
(i) If A is a 3×3 matrix and $\operatorname{det}(A)=4$, then $\operatorname{det}(3 \mathrm{~A})=12$.
(ii) If A is a 10×10 matrix and $\operatorname{det}(\mathrm{A})=2$, then $\operatorname{det}\left(A A^{T}\right)=1$
(iii) If Q, F are independent points in R^{n}, then $Q \cdot F=0$ (Q.F means dot product of Q with F).
(iv) $T(a, b, c)=(2 a b,-c)$ is a linear transformation from R^{3} to R^{2}.
(v) If A is a 3×3 matrix and $\operatorname{det}\left(A-\alpha I_{3}\right)=(1-\alpha)^{2}(3+\alpha)$ and $E_{1}=\operatorname{span}\{(2,4,0)\}$, then it is possible that A is diagnolizable.
(vi) If $T: R^{2} \rightarrow R^{2}$ is a linear transformation and $\operatorname{Ker}(T)=\{(0,0)\}$, then T is onto.
(vii) If A is a 4×5 matrix, then dimension of $N(A)$ is at least one.
(viii) If A is a 3×4 matrix and $\operatorname{Rank}(\mathrm{A})=3$, then the columns of A are dependent.

QUESTION 2. (8pts)For what value(s) of k is the system of equations below inconsistent?

$$
\begin{aligned}
-x+y+z & =k \\
2 x-3 y+z & =2 \\
-y+k z & =6+k
\end{aligned}
$$

QUESTION 3. (i) (5pts)For which value(s) of x is the following matrix singular (non-invertible)?

$$
\left(\begin{array}{ccc}
1 & x & 2 \\
-1 & 1 & 1 \\
-1 & 5 & x+1
\end{array}\right)
$$

(ii) (5pts)Find examples of 2×2 matrices A and B such that

$$
\operatorname{det}(A)=\operatorname{det}(B)=2 \text { and } \operatorname{det}(A+B)=25,
$$

or explain why no such matrices can exist.

QUESTION 4. (12pts) Let

$$
A=\left(\begin{array}{lll}
2 & -1 & 0 \\
1 & -1 & 0 \\
2 & -2 & 3
\end{array}\right)
$$

(i) Find A^{-1}.
(ii) Use your result in (i) above to solve the system

$$
\begin{array}{cl}
2 x-y & =1 \\
x-y & =2 \\
2 x-2 y+3 z & =1
\end{array}
$$

(iii) Solve the system $\left(A^{T}\right)^{-1} X=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
(If you need more space, then use the back of this page)

QUESTION 5. (12pts)

(i) Form a basis, say B , for P_{4} such that B contains the two independent polynomials : $f(x)=1+x+2 x^{2}, k(x)=$ $-2-2 x+x^{2}$.
(ii) Let $S=\operatorname{span}\{(1,1,-1,0),(0,1,1,1),(3,5,-1,2)\}$. Find an orthogonal basis for S.
(iii) Let S be the subspace as in (ii). Is $(2,5,1,3) \in S$? EXPLAIN your answer.

QUESTION 6. (12pts)

(i) Let $S=\{(a, b c+a, c) \mid a, b, c \in R\}$. Is S a subspace of R^{3} ? If yes, then find a basis for S. If No, then tell me why not.
(ii) Let $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in R\right.$ and $\left.\quad a+b+c=0\right\}$. Is S a subspace of $R^{2 \times 2}$? If yes, then find a basis for S. If No, then tell me why not.
(iii) Let $S=\left\{f(x) \in P_{4} \mid f(1)=0\right.$ OR $\left.f(-2)=0\right\}$. Is S a subspace of P_{4} ? If yes, then find a basis for S. If No, then tell me why not.
(iv) $S=\left\{\left[\begin{array}{cc}x & -x \\ 1 & y\end{array}\right]: x, y \epsilon R\right\}$. Is S a subspace of $R^{2 \times 2}$. If yes, then find a basis. If No, then tell me why not.

QUESTION 7. (14pts) Let $T: R^{4} \rightarrow R^{3}$ such that $T(a, b, c, d)=(a+2 b,-a-2 b+c-d,-2 a-4 b-c+d)$ be a linear transformation.
(i) (3pts)Find the standard matrix representation of T, say M.
(ii) (4pts)Find a basis for $\operatorname{Ker}(T)$.
(iii) (4pts)Find a basis for the range of T.
(iv) (3pts)Is $(-2,1,3,3) \in \operatorname{Kert}(T)$? Explain

QUESTION 8. (8 pts) Let $T: P_{2} \rightarrow R^{2}$ be a linear transformation such that $T(1+x)=(-6,-2)$, and $T(2-x)=$ $(-3,-1)$
(i) Find $T(5)$ and $T(3 x)$
(ii) Is there a polynomial $f(x)=a+b x$ such that $T(a+b x)=(6,2)$? if yes, then find such $f(x)$

QUESTION 9. (12pts) Given $A=\left[\begin{array}{cccc}1 & 4 & 4 & 4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ is a diagonalizable matrix.
(i) Find a diagonal matrix D and an invertible matrix Q such that $A=Q D Q^{-1}$.
(ii) Find A^{2012}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

