Linear Algebra MTH 221 Spring 2011, 1–8

Final Exam for MTH 221, Spring 2011

Ayman Badawi

QUESTION 1. (12pts, each = 1.5 points) Answer the following as true or false: NO WORKING NEED BE SHOWN.

(i) If A is a 3×3 matrix and det(A) = 4, then det(3A) = 12.

(ii) If A is a 10 × 10 matrix and det(A) = 2, then $det(AA^T) = 1$

(iii) If Q, F are independent points in \mathbb{R}^n , then Q.F = 0 (Q.F means dot product of Q with F).

- (iv) T(a, b, c) = (2ab, -c) is a linear transformation from R^3 to R^2 .
- (v) If A is a 3×3 matrix and $det(A \alpha I_3) = (1 \alpha)^2(3 + \alpha)$ and $E_1 = span\{(2, 4, 0)\}$, then it is possible that A is diagnolizable.
- (vi) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $Ker(T) = \{(0,0)\}$, then T is onto.
- (vii) If A is a 4×5 matrix, then dimension of N(A) is at least one.
- (viii) If A is a 3×4 matrix and Rank(A) = 3, then the columns of A are dependent.

QUESTION 2. (**8pts**)For what value(s) of k is the system of equations below inconsistent?

$$-x + y + z = k$$

$$2x - 3y + z = 2$$

$$-y + kz = 6 + k$$

QUESTION 3. (i) (**5pts**)For which value(s) of x is the following matrix singular (non-invertible)?

$$\left(\begin{array}{rrrr} 1 & x & 2 \\ -1 & 1 & 1 \\ -1 & 5 & x+1 \end{array}\right)$$

(ii) (5pts)Find examples of 2×2 matrices A and B such that

$$det(A) = det(B) = 2 \text{ and } det(A+B) = 25,$$

or explain why no such matrices can exist.

QUESTION 4. (12pts) Let

$$A = \left(\begin{array}{rrrr} 2 & -1 & 0\\ 1 & -1 & 0\\ 2 & -2 & 3 \end{array}\right)$$

(i) Find A^{-1} .

(ii) Use your result in (i) above to solve the system

$$2x - y = 1$$

$$x - y = 2$$

$$2x - 2y + 3z = 1$$

(iii) Solve the system
$$(A^T)^{-1}X = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

(If you need more space, then use the back of this page)

QUESTION 5. (12pts)

(i) Form a basis, say B, for P_4 such that B contains the two independent polynomials : $f(x) = 1 + x + 2x^2$, $k(x) = -2 - 2x + x^2$.

(ii) Let $S = span\{(1, 1, -1, 0), (0, 1, 1, 1), (3, 5, -1, 2)\}$. Find an orthogonal basis for S.

(iii) Let S be the subspace as in (ii). Is $(2,5,1,3) \in S$? EXPLAIN your answer.

QUESTION 6. (12pts)

(i) Let $S = \{(a, bc + a, c) \mid a, b, c \in R\}$. Is S a subspace of R^3 ? If yes, then find a basis for S. If No, then tell me why not.

(ii) Let $S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in R \text{ and } a + b + c = 0 \right\}$. Is S a subspace of $R^{2 \times 2}$? If yes, then find a basis for S. If No, then tell me why not.

(iii) Let $S = \{f(x) \in P_4 \mid f(1) = 0 \text{ OR } f(-2) = 0\}$. Is S a subspace of P_4 ? If yes, then find a basis for S. If No, then tell me why not.

(iv) $S = \left\{ \begin{bmatrix} x & -x \\ 1 & y \end{bmatrix} : x, y \in R \right\}$. Is S a subspace of $R^{2 \times 2}$. If yes, then find a basis. If No, then tell me why not.

QUESTION 7. (14pts) Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ such that T(a, b, c, d) = (a + 2b, -a - 2b + c - d, -2a - 4b - c + d) be a linear transformation.

(i) (**3pts**)Find the standard matrix representation of T, say M.

(ii) (4pts)Find a basis for Ker(T).

(iii) (4pts)Find a basis for the range of T.

(iv) (**3pts**)Is $(-2, 1, 3, 3) \in Kert(T)$? Explain

QUESTION 8. (8 pts) Let $T : P_2 \to R^2$ be a linear transformation such that T(1+x) = (-6, -2), and T(2-x) = (-3, -1)

(i) Find T(5) and T(3x)

(ii) Is there a polynomial f(x) = a + bx such that T(a + bx) = (6, 2)? if yes, then find such f(x)

QUESTION 9. (12pts) Given A =Γ1 4] 4 $\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ is a diagonalizable matrix.

(i) Find a diagonal matrix D and an invertible matrix Q such that $A = QDQ^{-1}$.

(ii) Find A^{2012} .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com